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Abstract—Users nowadays are normally involved in multiple
(usually more than two) online social networks simultaneously to
enjoy more social network services. Some of the networks that
users are involved in can share common structures either due
to the analogous network construction purposes or because of
the similar social network features. However, the social network
datasets available in research are usually pre-anonymized and
accounts of the shared users in different networks are mostly
isolated without any known connections. In this paper, we want
to identify such connections between the shared users’ accounts
in multiple social networks (i.e., the anchor links), which is
formally defined as the M-NASA (Multiple Anonymized Social
Networks Alignment) problem. M-NASA is very challenging to
address due to (1) the lack of known anchor links to build
models, (2) the studied networks are anonymized, where no
users’ personal profile or attribute information is available, and
(3) the “transitivity law” and the “one-to-one property” based
constraints on anchor links. To resolve these challenges, a novel
two-phase network alignment framework UMA (Unsupervised
Multi-network Alignment) is proposed in this paper. Extensive
experiments conducted on multiple real-world partially aligned
social networks demonstrate that UMA can perform very well
in solving the M-NASA problem.

Index Terms—Partial Network Alignment, Multiple Heteroge-
neous Social Networks, Data Mining

I. INTRODUCTION

As proposed in [12], people nowadays are normally in-
volved in multiple (usually more than two) social networks
simultaneously to enjoy more social network services. Many
of these networks can share common structure information
(e.g., friendship connections) due to either the analogous
network establishing purpose or because of similar network
features [33]. Meanwhile, social network data available for
research are usually anonymized for privacy concerns [2],
where users’ personal profile and attribute information (e.g.,
names, hometown, gender and age) are either removed or
replaced with meaningless unique identifiers, and the accounts
of the shared users in these anonymized social networks
are mostly isolated without any correspondence relationships.
In this paper, we want to study the “Multiple Anonymized
Social Networks Alignment” (M-NASA) problem to identify
such correspondence relationships between the shared users’
accounts across multiple anonymized social networks.

By following terminology definitions used in existing
aligned networks studies [12], [36], social networks sharing
common users are defined as “partially aligned networks”,
where the shared users are named as “anchor users” and the
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Fig. 1. An example of multiple anonymized partially aligned social networks.

correspondence relationships between anchor users’ accounts
in different networks are called anchor links. The M-NASA
problem studied in this paper aims at identifying the anchor
links among multiple anonymized social networks. To help
illustrate the M-NASA problem more clearly, we also give
an example in Figure 1, which involves 3 different social
networks (i.e., networks I, II and III). Users in these 3 networks
are all anonymized and their names are replaced with ran-
domly generated identifiers. Each pair of these 3 anonymized
networks can actually share some common users, e.g., “David”
participates in both networks I and II simultaneously, “Bob”
is using networks I and III concurrently, and “Charles” is
involved in all these 3 networks at the same time. Besides these
shared anchor users, in these 3 partially aligned networks,
some users are involved in one single network only (i.e., the
non-anchor users [36]), e.g., “Alice” in network I, “Eva” in
network II and “Frank” in network III. The M-NASA problem
studied in this paper aims at discovering the anchor links (i.e.,
the dashed bi-directional red lines) connecting anchor users
across these 3 social networks.

The M-NASA problem is of great importance for online
social networks, as it can be the prerequisite for various cross-
site social network services, e.g., cross-network link transfer
[30], [31], [36], inter-network community detection [9], [33],
[35], and viral marketing across networks [29]. With the
information transferred from developed social networks, link
prediction models proposed in [36] can overcome the cold-
start problem effectively; constrained by the anchor links,
community detection across aligned networks can refine the



community structures of each social network mutually [9],
[35]; via the anchor users, information can diffuse not only
within but also across networks which will lead to broader
impact and activate more users in viral marketing [29].

Besides its importance, the M-NASA problem is a novel
problem and totally different from existing works, e.g., (1)
supervised anchor link inference across social networks [12],
which focuses on inferring the anchor links between two social
networks with a supervised learning model; (2) network match-
ing [11], [17], which explores various heuristics to match two
networks based the known existence probabilities of potential
correspondence relationships; (3) entity resolution [4], which
aims at discovering multiple references to the same entity in
one single database with a relational clustering algorithm;
and (4) cross-media user identification [28], which matches
users between two networks based on various node attribute
information generated by users’ social activities.

M-NASA differs from all these related works in various
aspects: (1) M-NASA is a general multi-network alignment
problem and can be applied to align either two [12] or more
than two social networks; (2) M-NASA is an unsupervised
network alignment problem and requires no known anchor
links (which are extremely expensive to obtain in the real
world); (3) no extra heuristics will be needed and used in the
M-NASA problem; and (4) no information about the potential
anchor links nor their existence probabilities is required; and
(5) social networks studied in M-NASA are anonymized and
involve structure information only but no attribute information.

Besides these easily distinguishable distinctions mentioned
above, another significant difference of M-NASA from exist-
ing two network alignment problems is due to the “transitivity
law” that anchor links follow. In traditional set theory [14], a
relation R is defined to be a transitive relation in domain X iff
∀a, b, c ∈ X , (a, b) ∈ R∧(b, c) ∈ R → (a, c) ∈ R. If we treat
the union of user account sets of all these social networks as
the target domain X and treat anchor links as the relation R,
then anchor links depict a “transitive relation” among users
across networks. We can take the networks shown in Figure 1
as an example. Let u be a user involved in networks I, II and III
simultaneously, whose accounts in these networks are uI , uII

and uIII respectively. If anchor links (uI , uII) and (uII , uIII)
are identified in aligning networks (I, II) and networks (II, III)
respectively (i.e., uI , uII and uIII are discovered to be the
same user), then anchor link (uI , uIII) should also exist in the
alignment result of networks (I, III) as well. In the M-NASA
problem, we need to guarantee the inferred anchor links can
meet the transitivity law.

In addition to its importance and novelty, the M-NASA
problem is very difficult to solve due to the following chal-
lenges:
• unsupervised network alignment: No existing anchor

links are available between pairs of social networks
in the M-NASA problem and inferring anchor links
between social networks in an unsupervised manner is
very challenging.

• anonymized network alignment: Networks studied in this

paper are all pre-anonymized, where no attribute infor-
mation indicating users’ personal characteristics exists. It
makes the M-NASA problem much tougher.

• transitivity law preservation and utilization: Anchor links
among social networks follow the “transitivity law”. How
to (1) preserve such a property of anchor links, and (2)
utilize such a property to improve the multiple networks
partial alignment is still an open problem in this context
so far.

• one-to-one constraint on anchor links: Anchor links have
an inherent one-to-one constraint [12], i.e., each user
can have at most one account in each social network,
which will pose extra challenges on solving the M-
NASA problem. (The case that users have multiple
accounts in one network can be resolved with method
introduced in [25], where these duplicated accounts can
be aggregated in advance to form one unique virtual
account and the constraint on anchor links connecting
these virtual accounts will still be “one-to-one”.)

To solve the M-NASA problem, a novel network alignment
framework UMA (Unsupervised Multi-network Alignment)
is proposed in this paper. UMA addresses the M-NASA
problem with two steps: (1) unsupervised transitive anchor
link inference across multi-networks, and (2) transitive multi-
network matching to maintain the one-to-one constraint. In
step (1), UMA infers sets of potential anchor links with
unsupervised learning techniques by minimizing the friend-
ship inconsistency and preserving the alignment transitivity
property across networks. In step (2), UMA keeps the one-to-
one constraint on anchor links by selecting those which can
maximize the overall existence probabilities while maintaining
the matching transitivity property at the same time. The above
mentioned new concepts will be introduced in Section III.

The rest of this paper is organized as follows. In Section II,
we define some important concepts and the M-NASA prob-
lem. Method UMA will be introduced in Section III and
evaluated in Section IV. Finally, we introduce the related
works in Section V and conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we will follow the definitions of “aligned
networks” and “anchor links” proposed in [36], which are
introduced as follows.
Definition 1 (Anonymized Social Network): An anonymized
social network can be represented as graph G = (U , E), where
U denotes the set of users in the network and E represents
the social links among users. Users’ profile and attribute
information in G has all been deleted to protect individuals’
privacy.
Definition 2 (Multiple Aligned Social Networks): Mul-
tiple aligned social networks can be represented as
G = ((G(1), G(2), · · · , G(n)), (A(1,2),A(1,3), · · · ,A(n−1,n))),
where G(i), i ∈ {1, 2, · · · , n} represents an anonymized social
network and A(i,j), i, j ∈ {1, 2, · · · , n} denotes the set of
undirected anchor links between networks G(i) and G(j).



Definition 3 (Anchor Links): Given two social networks G(i)

and G(j), link (u(i), v(j)) is an anchor link between G(i) and
G(j) iff (u(i) ∈ U (i)) ∧ (v(j) ∈ U (j)) ∧ (u(i) and v(j) are
accounts of the same user), where U (i) and U (j) are the user
sets of G(i) and G(j) respectively.

Social networks studied in this paper are all partially aligned
[36] and the formal definitions of the concepts like “anchor
users”, “non-anchor users”, “full alignment”, “partial align-
ment” are available in [36].

Based on the above definitions, the M-NASA problem can
be formulated as follows:
The M-NASA Problem: Given the n isolated anonymized
social networks {G(1), G(2), · · · , G(n)}, the M-NASA prob-
lem aims at discovering the anchor links among these n net-
works, i.e., the anchor link sets A(1,2),A(1,3), · · · ,A(n−1,n).
Networks G(1), G(2), · · · , G(n) are partially aligned and the
constraint on anchor links in A(1,2),A(1,3), · · · ,A(n−1,n) is
one-to-one, which also follow the transitivity law.

III. PROPOSED METHOD

Based on observation about the “transitivity property” of
anchor links, in this section, we will introduce the UMA
method to address the M-NASA problem: in Section 3.1, we
formulate the unsupervised pairwise network alignment based
on friendship connection information as an optimization prob-
lem; integrated multi-network alignment will be introduced
in Section 3.2, where an extra constraint called alignment
transitivity penalty is added to the objective function; the joint
optimization function will be solved in Section 3.3 by relaxing
its constraints, and the redundant non-existing anchor links
introduced by such relaxation will be pruned with transitive
network matching in Section 3.4.

A. Unsupervised Pairwise Network Alignment

Anchor links between any two given networks G(i) and
G(j) actually define an one-to-one mapping (of users and
social links) between G(i) and G(j). To evaluate the qual-
ity of different inferred mapping (i.e., the inferred anchor
links), we introduce the concepts of cross-network Friendship
Consistency/Inconsistency in this paper. The optimal inferred
anchor links are those which can maximize the Friendship
Consistency (or minimize the Friendship Inconsistency) across
networks.

For any anonymized social network G = (U , E), the social
connections among users in it can be represented with the
social adjacency matrix.
Definition 4 (Social Adjacency Matrix): Given network G =
(U , E), its social adjacency matrix can be represented with
binary matrix S ∈ R|U|×|U| and entry S(l,m) = 1 iff the
corresponding social link (ul, um) ∈ E , where ul and um are
users in G.

Based on the above definition, given two partially aligned
social networks G(i) = (U (i), E(i)) and G(j) = (U (j), E(j)),
we can represent their corresponding social adjacency ma-
trices to be S(i) ∈ R|U(i)|×|U(i)| and S(j) ∈ R|U(j)|×|U(j)|

respectively.

Meanwhile, let A(i,j) be the set of undirected anchor links
to be inferred connecting networks G(i) and G(j), based on
which, we can construct the corresponding binary transitional
matrix T(i,j) between networks G(i) and G(j), where users
corresponding to rows and columns of T(i,j) are of the same
order as those of S(i) and S(j) respectively.
Definition 5 (Binary Transitional Matrix): Given anchor link
set A(i,j) ⊂ U (i) ×U (j) between networks G(i) and G(j), the
binary transitional matrix from G(i) to G(j) can be represented
as T(i,j) ∈ {0, 1}|U(i)|×|U(j)|, where T(i,j)(l,m) = 1 iff link
(u

(i)
l , u

(j)
m ) ∈ A(i,j), u(i)l ∈ U (i), u(j)m ∈ U (j).

The binary transitional matrix from G(j) to G(i) can be
defined in a similar way, which can be represented as T(j,i) ∈
{0, 1}|U(j)|×|U(i)|, where (T(i,j))> = T(j,i) as the anchor
links between G(i) and G(j) are undirected. Considering that
anchor links have an inherent one-to-one constraint, each row
and each column of the binary transitional matrices T(i,j) and
T(j,i) should have at most one entry filled with 1, which will
constrain the inference space of potential binary transitional
matrices T(i,j) and T(j,i) greatly.

Binary transitional matrix T(i,j) defines a mapping of users
from network G(i) to G(j), i.e., T(i,j) : U (i) → U (j).
Besides the user nodes, the social links in network G(i) can
also be projected to network G(j) via the binary transitional
matrices T(i,j) and T(j,i): the social adjacency matrix S(i)

being mapped from G(i) to G(j) can be represented as
T(j,i)S(i)T(i,j) (i.e., (T(i,j))>S(i)T(i,j)). Furthermore, con-
sidering social networks G(i) and G(j) share significant com-
munity structure overlaps, the friendship connections mapped
from G(i) to G(j) (i.e., (T(i,j))>S(i)T(i,j)) should be consis-
tent with those in G(j) (i.e., S(j)), which can be quantified as
the following cross-network friendship consistency formally
[13].
Definition 6 (Friendship Consistency/Inconsistency): The
friendship consistency between network G(i) and G(j) in-
troduced by the cross-network mapping T(i,j) is defined as
number of shared social links between those mapped from
G(i) and the social links in G(j) originally.

Meanwhile, we can define the friendship inconsistency as
the number of non-shared social links between those mapped
from G(i) and those in G(j). Based on the inferred anchor
transitional matrix T(i,j), the introduced friendship inconsis-
tency between matrices (T(i,j))>S(i)T(i,j) and S(j) can be
represented as: ∥∥∥(T(i,j))>S(i)T(i,j) − S(j)

∥∥∥2
F
,

where ‖·‖F denotes the Frobenius norm. And the optimal bi-
nary transitional matrix T̄(i,j), which can lead to the minimum
friendship inconsistency can be represented as

T̄(i,j) = arg minT(i,j)

∥∥∥(T(i,j))>S(i)T(i,j) − S(j)
∥∥∥2
F

s.t. T(i,j) ∈ {0, 1}|U
(i)|×|U(j)|,

T(i,j)1|U
(j)|×1 4 1|U

(i)|×1,

(T(i,j))>1|U
(i)|×1 4 1|U

(j)|×1,



where the last two equations are added to maintain the one-
to-one constraint on anchor links and X 4 Y iff X is of the
same dimensions as Y and every entry in X is no greater than
the corresponding entry in Y.

B. Transitive Integrate Network Alignment

Isolated network alignment can work well in addressing
the alignment problem of two social networks. However, in
the M-NASA problem studied in this paper, multiple social
networks (more than two) social networks are to be aligned
simultaneously. Besides minimizing the friendship inconsis-
tency between each pair of networks, the transitivity property
of anchor links also needs to be preserved in the transitional
matrices inference.

The transitivity property should holds for the alignment
of any n networks, where the minimum of n is 3. To help
illustrate the transitivity property more clearly, we will use 3
network alignment as an example to introduce the M-NASA
problem, which can be easily generalized to the case of n
networks alignment. Let G(i), G(j) and G(k) be 3 social
networks to be aligned concurrently. To accommodate the
alignment results and preserve the transitivity property, we
introduce the following alignment transitivity penalty:

Definition 7 (Alignment Transitivity Penalty): Let T(i,j),
T(j,k) and T(i,k) be the inferred binary transitional matrices
from G(i) to G(j), from G(j) to G(k) and from G(i) to
G(k) respectively among these 3 networks. The alignment
transitivity penalty C({G(i), G(j), G(k)}) introduced by the
inferred transitional matrices can be quantified as the number
of inconsistent social links being mapped from G(i) to G(k)

via two different alignment paths G(i) → G(j) → G(k) and
G(i) → G(k), i.e.,

C({G(i), G(j), G(k)})

=
∥∥∥(T(j,k))>(T(i,j))>S(i)T(i,j)T(j,k) − (T(i,k))>S(i)T(i,k)

∥∥∥2
F
.

Alignment transitivity penalty is a general penalty concept
and can be applied to n networks {G(1), G(2), · · · , G(n)},
n ≥ 3 as well, which can be defined as the summation of
penalty introduced by any three networks in the set, i.e.,

C({G(1), G(2), · · · , G(n)})

=
∑

∀{G(i),G(j),G(k)}⊂{G(1),G(2),··· ,G(n)}

C({G(i), G(j), G(k)}).

The optimal binary transitional matrices T̄(i,j), T̄(j,k)

and T̄(k,i) which can minimize friendship inconsistency and
the alignment transitivity penalty at the same time can be

represented to be

T̄(i,j), T̄(j,k), T̄(k,i)

= arg minT(i,j),T(j,k),T(k,i)

∥∥∥(T(i,j))>S(i)T(i,j) − S(j)
∥∥∥2
F

+
∥∥∥(T(j,k))>S(j)T(j,k) − S(k)

∥∥∥2
F

+
∥∥∥(T(k,i))>S(k)T(k,i) − S(i)

∥∥∥2
F

+ α ·
∥∥∥(T(j,k))>(T(i,j))>S(i)T(i,j)T(j,k) −T(k,i)S(i)(T(k,i))>

∥∥∥2
F

s.t. T(i,j) ∈ {0, 1}|U
(i)|×|U(j)|,T(j,k) ∈ {0, 1}|U

(j)|×|U(k)|

T(k,i) ∈ {0, 1}|U
(k)|×|U(i)|

T(i,j)1|U
(j)|×1 4 1|U

(i)|×1, (T(i,j))>1|U
(i)|×1 4 1|U

(j)|×1,

T(j,k)1|U
(k)|×1 4 1|U

(j)|×1, (T(j,k))>1|U
(j)|×1 4 1|U

(k)|×1,

T(k,i)1|U
(i)|×1 4 1|U

(k)|×1, (T(k,i))>1|U
(k)|×1 4 1|U

(i)|×1,

where parameter α denotes the weight of the alignment
transitivity penalty term, which is set as 1 by default in this
paper.

C. Relaxation of the Optimization Problem

The above objective function aims at obtaining the hard
mappings among users across different networks and entries
in all these transitional matrices are binary, which can lead to
a fatal drawback: hard assignment can be neither possible nor
realistic for networks with star structures as proposed in [13]
and the hard subgraph isomorphism [15] is NP-hard.

To overcome such a problem, we propose to relax the binary
constraint of entries in transitional matrices to allow them to
be real values within range [0, 1]. Each entry in the transitional
matrix represents a probability, denoting the confidence of
certain user-user mapping across networks. Such a relaxation
can make the one-to-one constraint no longer hold (which
will be addressed with transitive network matching in the
next subsection) as multiple entries in rows/columns of the
transitional matrix can have non-zero values. To limit the
existence of non-zero entries in the transitional matrices, we
replace the one-to-one constraint, e.g.,

T(k,i)1|U
(i)|×1 4 1|U

(k)|×1, (T(k,i))>1|U
(k)|×1 4 1|U

(i)|×1

with sparsity constraints∥∥∥T(k,i)
∥∥∥
0
≤ t

instead, where term ‖T‖0 denotes the L0 norm of matrix T,
i.e., the number of non-zero entries in T, and t is a small
positive number to limit the non-zero entries in the matrix
(i.e., the sparsity). Furthermore, in this paper, we propose to
add term ‖T‖0 to the minimization objective function, as it
can be hard to determine the value of t in the constraint.

Based on the above relaxations, we can obtain the new
objective function (available in the Appendix), which involves
3 variables T(i,j), T(j,k) and T(k,i) simultaneously, obtaining
the joint optimal solution for which at the same time is very
hard and time consuming. We propose to address the above
objective function by fixing two variables and updating the
other variable alternatively with gradient descent method [1].
As proposed in [13], if during the alternating updating steps,



the entries of the transitional matrices become invalid (i.e.,
values less than 0 or greater than 1), we apply the projection
technique introduced in [13] to project (1) negative entries to
0, and (2) entries greater than 1 to 1 instead. With these pro-
cesses, the updating equations of matrices T(i,j),T(j,k),T(k,i)

at step t+ 1 are given as follows

T(i,j)(t+ 1) = T(i,j)(t)

− η(i,j)
∂L
(
T(i,j)(t),T(j,k)(t),T(k,i)(t), β, γ, θ

)
∂T(i,j)

,

T(j,k)(t+ 1) = T(j,k)(t)

− η(j,k)
∂L
(
T(i,j)(t+ 1),T(j,k)(t),T(k,i)(t), β, γ, θ

)
∂T(j,k)

,

T(k,i)(t+ 1) = T(k,i)(t)

− η(k,i)
∂L
(
T(i,j)(t+ 1),T(j,k)(t+ 1),T(k,i)(t), β, γ, θ

)
∂T(k,i)

.

Such an iteratively updating process will stop when all tran-
sitional matrices converge. In the updating equations, η(i,j),
η(j,k) and η(k,i) are the gradient descent steps in updating
T(i,j), T(j,k) and T(k,i) respectively. The Lagrangian function
of the objective function is available in the Appendix.

Meanwhile, considering that ‖·‖0 is not differentiable be-
cause of its discrete values [27], we will replace the ‖·‖0 with
the ‖·‖1 instead (i.e., the sum of absolute values of all entries).
Furthermore, as all the negative entries will be projected to
0, the L1 norm of transitional matrix T can be represented
as
∥∥T(k,i)

∥∥
1

= 1>T(k,i)1 (i.e., the sum of all entries in
the matrix). In addition, the Frobenius norm ‖X‖2F can be
represented with trace Tr(XX>). The partial derivatives of
function L with regard to T(i,j), T(j,k), and T(k,i) are given
in the Appendix.

D. Transitive Network Matching

The constraint relaxation in previous section violates the
one-to-one property on anchor links seriously. To resolve such
a problem, in this section, we will apply the transitive network
matching to prune the introduced redundant anchor links. The
matching results (i.e., selected anchor links) need to meet both
the one-to-one constraint and transitivity property.

Given two networks G(i) and G(j), each potential anchor
link, e.g., (u

(i)
l , u

(j)
m ), between G(i) and G(j) is associated with

a binary variable x(i,j)l,m ∈ {0, 1} to denote whether anchor link
(u

(i)
l , u

(j)
m ) is selected or not in the matching, where

x
(i,j)
l,m =

{
1 if (u

(i)
l , u

(j)
m ) is selected,

0, otherwise.

For each user in network G(i), e.g., u(i)l ∈ U (i), at most
one potential anchor link attached to him will be selected in
the final alignment result with another network, e.g., G(j) (or
G(k)). So, based on the introduced binary variables, the one-
to-one constraint on anchor links between networks G(i) and

G(j) as well as networks G(i) and G(k) can be represented as
follows:

∑
u
(j)
m ∈U(j)

x
(i,j)
l,m ≤ 1,

∑
u
(k)
o ∈U(k)

x
(i,k)
l,o ≤ 1,∀u(i)l ∈ U

(i).

Similarly, we can also define the binary variables
x
(j,k)
m,o , x

(k,i)
o,l ∈ {0, 1} and the corresponding one-to-one con-

straints for potential anchor links (u
(j)
m , u

(k)
o ) and (u

(k)
o , u

(i)
l )

between networks G(j), G(k) and between networks G(k), G(i)

respectively to represent whether these links are selected or
not.

Besides the one-to-one constraint, the finally selected anchor
links should also follow the transitivity law.

According to the definition of “transitivity law” in Sec-
tion I, if anchor links (u

(i)
l , u

(j)
m ) and (u

(j)
m , u

(k)
o ) are se-

lected ∀l ∈ {1, 2, · · · , |U (i)|},m ∈ {1, 2, · · · , |U (j)|}, o ∈
{1, 2, · · · ,U (k)|} in matching networks G(i), G(j) and net-
works G(j), G(k), then anchor link (u

(k)
o , u

(i)
l ) should be

selected as well in the matching of networks G(k), G(i), i.e.,
x
(k,i)
o,l = 1. In other words, in 3 networks matching, the case

that only two variables in {x(i,j)l,m , x
(j,k)
m,o , x

(k,i)
o,l } are assigned

with value 1 while the remaining one is 0 cannot hold in the
final matching results, i.e.,

x
(i,j)
l,m + x(j,k)m,o + x

(k,i)
o,l 6= 2,∀l ∈ {1, 2, · · · , |U (i)|},

∀m ∈ {1, 2, · · · , |U (j)|},∀o ∈ {1, 2, · · · ,U (k)|,

which is called the matching transitivity constraint. The match-
ing transitivity constraint can be easily generalized to the case
of matchingn (n ≥ 3) networks.

Definition 8 (Matching Transitivity Constraint): Let G =
{G(1), G(2), · · · , G(n)} be a set of n networks, the matching
transitivity constraint (MTC) for matching these n networks
in G can be defined recursively as follows:

MTC(G) = {
∑

xG 6= |G|− 1}∪{
⋃

G′⊂G,|G′|=|G|−1

MTC(G′)},

where
∑
xG = x

(1,2)
l,m + x

(2,3)
m,o + · · · + x

(n,1)
p,l ,∀l ∈

{1, 2, · · · ,U (1)},∀m ∈ {1, 2, · · · ,U (2)}, · · · ,∀p ∈
{1, 2, · · · ,U (n)} represents the transitivity constraint
involving all these n networks.

The final selected anchor links should be those with high
confidence scores in the inferred transitional matrices but also
can meet the one-to-one matching constraint and matching
transitivity constraint simultaneously. We formulate the transi-
tive network matching as the following optimization problem:



max
x(i,j),x(j,k),x(k,i)

∑
l,m

x
(i,j)
l,m T(i,j)(l,m) +

∑
l,m

x
(i,j)
l,m T(i,j)(l,m)

+
∑
l,m

x
(i,j)
l,m T(i,j)(l,m),

s.t.
∑

u
(j)
m ∈U(j)

x
(i,j)
l,m ≤ 1,

∑
u
(k)
o ∈U(k)

x
(i,k)
l,o ≤ 1,∀u(i)l ∈ U

(i),

∑
u
(i)
l ∈U(i)

x
(j,i)
m,l ≤ 1,

∑
u
(k)
o ∈U(k)

x(j,k)m,o ≤ 1,∀u(j)m ∈ U (j),

∑
u
(i)
l ∈U(i)

x
(k,i)
o,l ≤ 1,

∑
u
(j)
m ∈U(j)

x(k,j)o,m ≤ 1,∀u(k)o ∈ U (k),

x
(i,j)
l,m + x(j,k)m,o + x

(k,i)
o,l 6= 2,∀l ∈ {1, 2, · · · , |U (i)|},

∀m ∈ {1, 2, · · · , |U (j)|},∀o ∈ {1, 2, · · · ,U (k)|,
x
(i,j)
l,m ∈ {0, 1},∀u(i)l ∈ U

(i), u(j)m ∈ U (j).

x(j,k)m,o ∈ {0, 1},∀u(j)m ∈ U (j), u(k)o ∈ U (k).

x
(k,i)
o,l ∈ {0, 1},∀u

(k)
o ∈ U (k), u

(i)
l ∈ U

(i).

In the above objective function, the matching transitivity
constraint x(i,j)l,m + x

(j,k)
m,o + x

(k,i)
o,l 6= 2 is actually non-convex,

which can be another challenge in addressing the function. In
this paper, we propose to (1) remove the matching transitivity
constraint from the objective function, and (2) apply the
matching transitivity constraint to post-process the solution
(obtained from the objective function without the constraint).

The objective function (with the matching transitivity con-
straint removed) can be solved with open source optimization
toolkit, e.g., Scipy.Optimization1 and GLPK2, and we will not
describe how to solve in details due to the limited space.
Among all the obtained solutions, we can check all the
links whose corresponding variables meeting x(i,j)l,m + x

(j,k)
m,o +

x
(k,i)
o,l = 2 and assign the variable with value 0 with 1 instead.

For example, for 3 given variables x(i,j)l,m , x(j,k)m,o and x(k,i)o,l , if
x
(i,j)
l,m = x

(j,k)
m,o = 1 but x(k,i)o,l = 0, we will assign x(k,i)o,l with

new value 1 and x
(k,i)
o,x = 0,∀x 6= l, x(k,i)x,l = 0,∀x 6= o to

preserve the matching transitivity constraint.

IV. EXPERIMENTS

To examine the effectiveness of UMA in addressing the M-
NASA problem, extensive experiments on real-world multiple
partially aligned social networks will be done in this section.
Next, we will introduce the dataset used in the experiments in
Section IV-A and give brief descriptions about the experiment
settings in Section IV-B. Experiment results and detailed
analysis will be given in Sections IV-C and IV-D.

1http://docs.scipy.org/doc/scipy/reference/optimize.html
2http://www.gnu.org/software/glpk/

A. Dataset Description

Nowadays, Question-and-Answer (Q&A) websites are be-
coming a new platform for people to share knowledge, where
individuals can conveniently post their questions online and
get first-hand replies very quickly. A large number of Q&A
sites have sprung out overnight, e.g., Stack Overflow3, Super
User4, Programmers5, Quora6. Stack Overflow, Super User and
Programmers are all Q&A sites constructed for exchanging
knowledge about computer science and share large number
of common users, which are used as the partially aligned
networks G(i), G(j) and G(k) respectively in the experiments.

We crawled the multiple partially aligned Q&A networks
during November 2014-January 2015 and the complete infor-
mation of 10, 000 users in Stack Overflow, Super User and
Programmers Q&A sites respectively. The anchor links (i.e.,
the ground truth) between pairs of these Q&A networks are ob-
tained by crawling their homepages in these sites respectively,
where users’ IDs in all these networks they participate in are
listed. For example, at site7, we can have access to all the Q&A
sites IDs that Jon Skeet owns, which can be used to extract
the ground truth anchor links across networks. Among these
3 networks, the number of shared anchor users (1) between
Stack Overflow and Super User is 3, 677, (2) between Stack
Overflow and Programmers is 2, 626, (3) between Super User
and Programmers is 1, 953. Users in Q&A sites can answer
questions which are of their interests. Considering that users
don’t have social links in these Q&A sites, we will create
social connections among users if they have every answered
the same question in the past. Answering common questions
in Q&A sites denotes that they may share common interests
as well as common expertise in certain areas.

B. Experiment Settings

In the experiments, anchor links between users across
networks are used for validation only and are not involved
in building models. Considering that the network alignment
method introduced in this paper is based on the social link
information only, isolated users with no social connections in
each network are sampled and removed. Based on the social
links among users, we infer the optimal transitional matri-
ces between pairs of networks by minimizing the friendship
inconsistency as well as the alignment transitivity penalty.
Alternative updating method is used to solve the joint objective
function, where the transitional matrices are initialized with
method introduced in [13]. All users in each network are
partitioned into 10 bins according to their social degrees,
where initial anchor links are assumed to exist between users
belonging to the corresponding bins between pairs of net-
works, e.g., users in bin 1 of Stack Overflow and those in bin
1 of Programmers. The initial values of entries corresponding
to these anchor links in transitional matrices are calculated

3http://stackoverflow.com
4http://superuser.com
5http://programmers.stackexchange.com
6http://www.quora.com
7http://stackexchange.com/users/11683/jon-skeet?tab=accounts
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Fig. 2. L1 norm of transitional matrices at each iteration.

with the relative degree distance based on their social degrees,

e.g., rdd(u
(i)
l , u

(j)
m ) =

(
1 +

|deg(u(i)
l )−deg(u(j)

m )|
(deg(u

(i)
l )+deg(u

(j)
m ))/2

)−1
, where

deg(u) denotes the social degree of user u in the networks.
Based on the inferred transitional matrices, anchor links with
the highest scores but can meet the one-to-one constraint and
transitivity law are selected with the method introduced in
Section III-D, which can output both the confidence scores
and their inferred labels.

Comparison Methods: Considering that social networks stud-
ied in this paper (1) contain only social link information, and
(2) no known anchor links exist between networks, therefore,
neither inter-network user resolution method MOBIUS [28]
built with various user attribute information nor supervised
network alignment method MNA [12] can be applied to
address the M-NASA problem. To show the advantages of
UMA, we compare UMA with many other baseline methods,
including both state-of-art network alignment methods as well
as extended traditional methods, which are listed as follows.

• Unsupervised Multi-network Alignment: Method UMA
introduced in this paper can align multiple partially
networks concurrently, which include two steps: (1)
transitive network alignment, and (2) transitive network
matching. Anchor links inferred by UMA can maintain
both one-to-one constraint and transitivity property.

• Integrated Network Alignment (INA): To show that tran-
sitive network matching can improve the alignment re-
sults, we introduce another method named INA, which
is identical to the first step of UMA but without the
matching step. Anchor links inferred by INA cannot
maintain the one-to-one constraint nor transitivity law
property.

• Pairwise Network Alignment: BIG-ALIGN is a state-of-
art unsupervised network alignment method proposed in
[13] for aligning pairwise networks. The output of BIG-
ALIGN cannot maintain the one-to-one constraint nor
transitivity property of anchor links.

• Pairwise Alignment + Pairwise Matching: We also extend
BIG-ALIGN [13] and introduce another baseline method
BIG-ALIGN-PM, which can further prune the redundant
non-existing anchor links with pairwise network stable
matching proposed in [12] to guarantee the inferred
anchor links can meet the one-to-one constraint.

• Relative Degree Distance (RDD) based Alignment: The
transitional matrix initialization method RDD [13] is
compared as another baseline methods, which calculate
the confidence scores of potential anchor links with the
degree information of users.

• Relative PageRank based Alignment: For completeness,
we also extend the traditional PageRank method and
propose a new method RPR to infer potential anchor
links. For a potential anchor link (u

(i)
l , u

(j)
m ), RPR cal-

culates the reciprocal of the relative pagerank scores
between u

(i)
l , u

(j)
m as its existence confidence, i.e.,

|pagerank(u
(i)
l )− pagerank(u

(j)
m )|−1.

Evaluation Metrics:
To evaluate the performance of different comparison meth-

ods, various commonly used evaluation metrics are applied.
All these comparison methods (in INA, the selected anchor
links are assigned with scores 1, while those not selected
are assigned with scores 0) can output confidence scores
of potential anchor links, which are evaluated by metrics
AUC and Precision@100. UMA and INA can both output
the predicted labels of potential anchor links, which are also
evaluated by metrics Accuracy, Precision, Recall and F1.

C. Convergence Analysis

To solve the objective function in Section III-C, alternative
updating method is applied to infer the optimal transitional
matrices across networks. To demonstrate that the matrix
updating equation can converge within a limited iterations, we
calculate the L1 norms (i.e., the sum of all entries’ absolute
value) of transitional matrices T(i,j), T(j,k) and T(k,i) at each
iteration, which are available in Figure 2. As shown in the
plots, after a few iterations (about 5 iterations), the L1 norm
of these transitional matrices will converge quickly with minor
fluctuations around certain values, which demonstrates that the
derived equation updating can converge very well in updating
the transitional matrices.

D. Experiment Results

The experiment results of all these comparison methods are
available in Figures 3-4 respectively, where performance of all
these comparison methods in Figure 3 are evaluated by AUC
and Precision@100, while those of UMA and BIG-ALIGN-
PM in Figure 4 are evaluated by Precision, Recall, F1 and
Accuracy respectively.
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Fig. 3. Performance comparison of different methods evaluated by AUC and Precision@100.

In Figure 3, we show the alignment results achieved by all
the 6 comparison methods between network pairs (G(i), G(j)),
(G(j), G(k)) and (G(k), G(i)). As shown in the plots, UMA
performs much better than all the other comparison methods
with great advantages in predicting the anchor links between
all these networks pairs. For instance, in Figure 3(a), the AUC
obtained by UMA is 0.87, which is about 4% larger than INA
and over 13% larger than the other comparison methods; in
Figure 3(f), the Precision@100 achieved by UMA is 0.85,
which is over 25% higher than that of INA, almost the double
of that gained by BIG-ALIGN and BIG-ALIGN-PM, and even
4-5 times of that obtained by RDD and RPR.

By comparing UMA and INA, method UMA consisting
of transitive integrated network alignment and transitive net-
work matching performs better, which demonstrates the ef-
fectiveness of the transitive network matching step in pruning
redundant non-existing anchor links.

Compared with the isolated pairwise network alignment
method BIG-ALIGN, the fact that INA achieves better perfor-
mance justifies that aligning multiple networks simultaneously
by incorporating the alignment transitivity penalty into the ob-
jective function can identify better anchor links than pairwise
isolated network alignment.

By comparing BIG-ALIGN-PM and BIG-ALIGN, the pair-
wise network matching step can help improve the prediction
results of anchor links between networks (G(k), G(i)) but
has no positive effects (even has negative effects) on the
anchor links between other network pairs, e.g., network pairs
(G(i), G(j)) and (G(j), G(k)). However, the effective of the
transitive network matching method applied in UMA has been
proved in the comparison of UMA and INA. It may show
that transitive network matching exploiting the transitivity law

performs much better than the pairwise network matching
method.

For completeness, we also compare UMA with extensions
of traditional methods RDD and RPR and the advantages of
UMA over these methods are very obvious.

Furthermore, in Figure 4, we also show the results obtained
by UMA and BIG-ALIGN-PM between each network pair.
The Precision, Recall and F1 scores achieved by UMA in
Figures 4(a)-4(c) are all much higher than those obtained
by BIG-ALIGN-PM, which demonstrates the effective and
advantages of UMA over BIG-ALIGN. However, Accuracy
scores of UMA and BIG-ALIGN-PM in Figure 4(d) are both
very high (around 100%) with negligible gaps, which may be
due to the class imbalance issues [5].

V. RELATED WORKS

Graph alignment is an important research problem and
dozens of papers have been published on this topic in the past
decades. Depending on specific disciplines, the studied graphs
can be social networks in data mining [12] protein-protein
interaction (PPI) networks and gene regulatory networks in
bioinformatics [10], [21], [16], [22], chemical compound in
chemistry [24], data schemas in data warehouse [18], ontol-
ogy in web semantics [7], graph matching in combinatorial
mathematics [17], as well as graphs in computer vision and
pattern recognition [6], [3].

In bioinformatics, the network alignment problem aims at
predicting the best mapping between two biological networks
based on the similarity of the molecules and their interaction
patterns. By studying the cross-species variations of biological
networks, network alignment problem can be applied to predict
conserved functional modules [20] and infer the functions
of proteins [19]. Graemlin [8] conducts pairwise network
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Fig. 4. Performance comparison of UMA and BIG-ALIGN-PM evaluated by Precision, Recall, F1 and Accuracy.

alignment by maximizing an objective function based on a
set of learned parameters. Some works have been done on
aligning multiple network in bioinformatics. IsoRank proposed
in [23] can align multiple networks greedily based on the
pairwise node similarity scores calculated with spectral graph
theory. IsoRankN [16] further extends IsoRank by exploiting
a spectral clustering scheme.

In recent years, with rapid development of online social
networks, researchers’ attention starts to shift to the alignment
of social networks. Enlightened by the homogeneous network
alignment method in [26], Koutra et al. [13] propose to align
two bipartite graphs with a fast alignment algorithm. Zafarani
et al. [28] propose to match users across social networks based
on various node attributes, e.g., username, typing patterns and
language patterns etc. Kong et al. formulate the heterogeneous
social network alignment problem as an anchor link prediction
problem. A two-step supervised method MNA is proposed
in [12] to infer potential anchor links across networks with
heterogeneous information in the networks. However, social
networks in the real world are mostly partially aligned actually
and lots of users are not anchor users. Zhang et al. have
proposed the partial network alignment methods based on
supervised learning setting and PU learning setting in [32]
and [34] respectively.

VI. CONCLUSION

In this paper, we have studied the multiple anonymized
social network alignment (M-NASA) problem to infer the an-
chor links across multiple anonymized online social networks

simultaneously. An effective two-step multiple network align-
ment framework UMA has been proposed to address the M-
NASA problem. The anchor links to be inferred follow both
transitivity law and one-to-one property, under the constraint
of which, UMA matches multiple anonymized networks by
minimizing the friendship inconsistency and selects anchor
links which can lead to the maximum confidence scores across
multiple anonymized social networks.
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VIII. APPENDIX: NEW OBJECTIVE FUNCTION

Based on the above relaxations used in Section III-C, the
new objective function can be represented as

T̄(i,j), T̄(j,k), T̄(k,i)

= arg minT(i,j),T(j,k),T(k,i)

∥∥∥(T(i,j))>S(i)T(i,j) − S(j)
∥∥∥2
F

+
∥∥∥(T(j,k))>S(j)T(j,k) − S(k)

∥∥∥2
F

+
∥∥∥(T(k,i))>S(k)T(k,i) − S(i)

∥∥∥2
F

+ α ·
∥∥∥(T(j,k))>(T(i,j))>S(i)T(i,j)T(j,k) −T(k,i)S(i)(T(k,i))>

∥∥∥2
F

+ β ·
∥∥∥T(i,j)

∥∥∥
0

+ γ ·
∥∥∥T(j,k)

∥∥∥
0

+ θ ·
∥∥∥T(k,i)

∥∥∥
0

s.t. 0|U
(i)|×|U(j)| 4 T(i,j) 4 1|U

(i)|×|U(j)|,

0|U
(j)|×|U(k)| 4 T(j,k) 4 1|U

(j)|×|U(k)|,

0|U
(k)|×|U(i)| 4 T(k,i) 4 1|U

(k)|×|U(i)|.

The Lagrangian function of the objective function can be
represented as

L(T(i,j),T(j,k),T(k,i), β, γ, θ) =
∥∥∥(T(i,j))>S(i)T(i,j) − S(j)

∥∥∥2
F

+
∥∥∥(T(j,k))>S(j)T(j,k) − S(k)

∥∥∥2
F

+
∥∥∥(T(k,i))>S(k)T(k,i) − S(i)

∥∥∥2
F

+ α ·
∥∥∥(T(j,k))>(T(i,j))>S(i)T(i,j)T(j,k) −T(k,i)S(i)(T(k,i))>

∥∥∥2
F

+ β ·
∥∥∥T(i,j)

∥∥∥
0

+ γ ·
∥∥∥T(j,k)

∥∥∥
0

+ θ ·
∥∥∥T(k,i)

∥∥∥
0
.

The partial derivatives of function L with regard to T(i,j),
T(j,k), and T(k,i) will be:

(1)
∂L

(
T(i,j),T(j,k),T(k,i), β, γ, θ

)
∂T(i,j)

= 2 · S(i)
T

(i,j)
(T

(i,j)
)
>
(S

(i)
)
>
T

(i,j)

+ 2 · (S(i)
)
>
T

(i,j)
(T

(i,j)
)
>
S
(i)

T
(i,j)

+ 2α · S(i)
T

(i,j)
T

(j,k)
(T

(j,k)
)
>
(T

(i,j)
)
>
(S

(i)
)
>
T

(i,j)
T

(j,k)
(T

(j,k)
)
>

+ 2α · (S(i)
)
>
T

(i,j)
T

(j,k)
(T

(j,k)
)
>
(T

(i,j)
)
>
S
(i)

T
(i,j)

T
(j,k)

(T
(j,k)

)
>

− 2 · S(i)
T

(i,j)
(S

(j)
)
> − 2 · (S(i)

)
>
T

(i,j)
S
(j)

− 2α · (S(i)
)
>
T

(i,j)
T

(j,k)
T

(k,i)
S
(i)

(T
(k,i)

)
>
(T

(j,k)
)
>

− 2α · S(i)
T

(i,j)
T

(j,k)
T

(k,i)
(S

(i)
)
>
(T

(k,i)
)
>
(T

(j,k)
)
> − β · 11>

.

(2)
∂L

(
T(i,j),T(j,k),T(k,i), β, γ, θ

)
∂T(j,k)

= 2 · S(j)
T

(j,k)
(T

(j,k)
)
>
(S

(j)
)
>
T

(j,k)

+ 2 · (S(j)
)
>
T

(j,k)
(T

(j,k)
)
>
S
(j)

T
(j,k)

+ 2α · (T(i,j)
)
>
S
(i)

T
(i,j)

T
(j,k)

(T
(j,k)

)
>
(T

(i,j)
)
>
(S

(i)
)
>
T

(i,j)
T

(j,k)

+ 2α · (T(i,j)
)
>
(S

(i)
)
>
T

(i,j)
T

(j,k)
(T

(j,k)
)
>
(T

(i,j)
)
>
S
(i)

T
(i,j)

T
(j,k)

− 2 · S(j)
T

(j,k)
(S

(k)
)
> − 2 · (S(j)

)
>
T

(j,k)
S
(k)

− 2α · (T(i,j)
)
>
(S

(i)
)
>
T

(i,j)
T

(j,k)
T

(k,i)
S
(i)

(T
(k,i)

)
>

− 2α · (T(i,j)
)
>
S
(i)

T
(i,j)

T
(j,k)

T
(k,i)

(S
(i)

)
>
(T

(k,i)
)
> − γ · 11>

.

(3)
∂L

(
T(i,j),T(j,k),T(k,i), β, γ, θ

)
∂T(k,i)

= 2 · S(k)
T

(k,i)
(T

(k,i)
)
>
(S

(k)
)
>
T

(k,i)

+ 2 · (S(k)
)
>
T

(k,i)
(T

(k,i)
)
>
S
(k)

T
(k,i)

+ 2αT
(k,i)

(S
(i)

)
>
(T

(k,i)
)
>
T

(k,i)
S
(i)

+ 2αT
(k,i)

S
(i)

(T
(k,i)

)
>
T

(k,i)
(S

(i)
)
>

− 2 · S(k)
T

(k,i)
(S

(i)
)
> − 2 · (S(k)

)
>
T

(k,i)
S
(i)

− 2α · (T(j,k)
)
>
(T

(i,j)
)
>
(S

(i)
)
>
T

(i,j)
T

(j,k)
T

(k,i)
S
(i)

− 2α · (T(j,k)
)
>
(T

(i,j)
)
>
S
(i)

T
(i,j)

T
(j,k)

T
(k,i)

(S
(i)

)
> − θ · 11>

.


